ECS455: Chapter 5 OFDM

5.4 Cyclic Prefix (CP)

Dr.Prapun Suksompong prapun.com/ecs455

Office Hours:

BKD 3601-7
Wednesday 15:30-16:30
Friday $\quad 9: 30-10: 30$

Three steps towards modern OFDM

1. Mitigate Multipath (ISI): Decrease the rate of the original data stream via multicarrier modulation (FDM)
2. Gain Spectral Efficiency: Utilize orthogonality
3. Achieve Efficient Implementation: FFT and IFFT

- Extra step: Completely eliminate ISI and ICI
- Cyclic prefix

Cyclic Prefix: Motivation (1)

- Recall: Multipath Fading and Delay Spread

Transmitted
Signal

Received Signal

Cyclic Prefix: Motivation (2)

- OFDM uses large symbol duration T_{s}
- compared to the duration of the impulse response $\tau_{\max }$ of the channel
- to reduce the amount of ISI
- Q: Can we "eliminate" the multipath (ISI) problem?
- A:To reduce the ISI, add guard interval larger than that of the estimated delay spread.
- If the guard interval is left empty, the orthogonality of the sub-carriers no longer holds, i.e., ICI (inter-channel interference) still exists.
- Solution: To prevent both the ISI as well as the ICI, OFDM symbol is cyclically extended into the guard interval.

BLike

Cyclic Prefix

Guard Interval, $\mathrm{T}_{\mathrm{CP}}>\tau_{\max }$ Using empty spaces as guard interval at the beginning of each symbol

End of symbol is prepended to beginning Guard interval still equals to $T_{\text {Cp }}$

Using cyclic prefix:
OFDM symbol length: $T_{\text {sym }}+T_{\text {cp }}$
Efficiency: $T_{\text {sym }} /\left(T_{\text {sym }}+T_{c p}\right)$

Recall: Convolution

N-pt signal * N-pt signal $=N-p t$ signal

Circular Convolution
 (Regular Convolution)

Replicate x (now it looks periodic) Then, perform the usual convolution only on $\mathrm{n}=0$ to $\mathrm{N}-1$

Circular Convolution: Examples 1
Find

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] *\left[\begin{array}{lll}
4 & 5 & 6
\end{array}\right]} \\
& =\left[\begin{array}{lllll}
4 & 13 & 28 & 27 & 18
\end{array}\right]
\end{aligned}
$$

$$
123
$$

$$
654
$$

$$
4
$$

$$
654
$$

$$
5 \times 1+4 \times 2=13
$$

$$
654
$$

$$
6 \times 1+5 \times 2+4 \times 3=28
$$

$$
654
$$

$$
6 \times 2+5 \times 3=27
$$

$$
654
$$

18

$$
\begin{aligned}
& \left.\begin{array}{l}
{\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \circledast\left[\begin{array}{lllllllllll}
4 & 1 & 5 & 3 \\
4 & 6
\end{array}\right] \begin{array}{lllllllll}
1 & 2 & 3 & 1 & 2 & 3 & 1 & 2 & 3
\end{array} 12} \\
6
\end{array}\right) \\
& {\left[\begin{array}{lllll}
1 & 2 & 3 & 0 & 0
\end{array}\right] \circledast\left[\begin{array}{lllll}
4 & 5 & 6 & 0 & 0
\end{array}\right]} \\
& =\left[\begin{array}{lllll}
4 & 13 & 28 & 27 & 18
\end{array}\right]
\end{aligned}
$$

Discussion

- Regular convolution of an $\mathrm{N}_{1}-$ point vector and an $\mathrm{N}_{2}-$ point vector gives $\left(\mathrm{N}_{1}+\mathrm{N}_{2}-1\right)$-point vector.
- Circular convolution is performed between two equallength vectors. The results also has the same length.
- Circular convolution can be used to find the regular convolution by zero-padding.
- Zero-pad the vectors so that their length is $\mathrm{N}_{1}+\mathrm{N}_{2}-1$.
- Example:

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 0 & 0
\end{array}\right] \circledast\left[\begin{array}{lllll}
4 & 5 & 6 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] *\left[\begin{array}{lll}
4 & 5 & 6
\end{array}\right]
$$

- In modern OFDM, we want to perform circular convolution via regular convolution.

Circular Convolution in Communication

- We want the receiver to obtain the circular convolution of the signal (channel input) and the channel.
- Q:Why?
- A:
- CTFT: convolution in time domain corresponds to multiplication in frequency domain.
- This fact does not hold for DFT.
- DFT: circular convolution in (discrete) time domain corresponds to multiplication in (discrete) frequency domain.
- We want to have multiplication in frequency domain.
- So, we want circular convolution and not the regular convolution.
- Problem: Real channel does regular convolution.
- Solution: With cyclic prefix, regular convolution can be used to create circular convolution.

Example ${ }_{2} n_{n[r]}$
 $\left[\begin{array}{lllll}1 & -2 & 3 & 1 & 2\end{array}\right] \circledast\left[\begin{array}{lllll}3 & 2 & 1 & 0 & 0\end{array}\right]=$?

Solution:

$$
\begin{aligned}
& \begin{array}{lllllllllllllll}
1 & -2 & 3 & 1 & 2 & 1 & -2 & 3 & 1 & 2 & 1 & -2 & 3 & 1 & 2
\end{array} \\
& \begin{array}{lllll}
0 & 0 & 1 & 2 & 3
\end{array} \\
& \begin{array}{lllll}
0 & 0 & 1 & 2 & 3
\end{array} \\
& \begin{array}{lllll}
0 & 0 & 1 & 2 & 3
\end{array} \\
& \begin{array}{lllll}
0 & 0 & 1 & 2 & 3
\end{array} \\
& \begin{array}{lllll}
0 & 0 & 1 & 2 & 3
\end{array} \\
& {\left[\begin{array}{lllll}
1 & -2 & 3 & 1 & 2
\end{array}\right] \circledast\left[\begin{array}{lllll}
3 & 2 & 1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lllll}
8 & -2 & 6 & 7 & 11
\end{array}\right]}
\end{aligned}
$$

Example 2

$\left[\begin{array}{lllll}1 & -2 & 3 & 1 & 2\end{array}\right] \circledast\left[\begin{array}{lllll}3 & 2 & 1 & 0 & 0\end{array}\right]=$?
Observation: We don't need to replicate the x indefinitely. Furthermore, when h is shorter than x, we need only a part of one replica.

Not needed in the calculation
$\begin{array}{lllllllllllllll}1 & -2 & 3 & 1 & 2 & 1 & -2 & 3 & 1 & 2 & 1 & -2 & 3 & 1 & 2\end{array}$

$$
\begin{array}{cccccccc}
0 & 0 & 1 & 2 & 3 & & & \\
0 & 0 & 1 & 2 & 3 & & & \begin{array}{r}
1 \times 1+2 \times 2+1 \times 3=1+4+3=8 \\
\\
\\
\\
\end{array} 0
\end{array} 0
$$

Example 2

Try this: use only the necessary part of the replica and then convolute with the channel.
$\left[\begin{array}{lllllll}1 & 2 & 1 & -2 & 3 & 1 & 2\end{array}\right] *\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]=$?
Copy the last v samples of the symbols at the beginning of the symbol. This partial replica is called the cyclic prefix.

$$
\left.\begin{array}{r}
1 \times 3=3 \\
1 \times 2+2 \times 3=2+6=8 \\
1 \times 1+2 \times 2+1 \times 3=1+4+3=8 \\
2 \times 1+1 \times 2+(-2) \times 3=2+2-6=-2 \\
1 \times 1+(-2) \times 2+3 \times 3=1-4+9=6 \\
(-2) \times 1+3 \times 2+1 \times 3=-2+6+3=7 \\
3 \times 1+1 \times 2+2 \times 3=3+2+6=11 \\
1 \times 1+2 \times 2=1+4=5 \\
2 \times 1=2
\end{array}\right)
$$

Example 2

- We now know that

Cyclic Prefix

$$
\left[\begin{array}{lllll}
1 & -2 & 3 & 1 & 2
\end{array}\right] \circledast\left[\begin{array}{lllll}
3 & 2 & 1 & 0 & 0
\end{array}\right]
$$

- Similarly, you may check that

$$
\left.\left|\left[\begin{array}{lllll}
-\underbrace{-2}_{\text {Cyclic Prefix }} & 1 & 2 & 1 & -3 \\
-2 & 1
\end{array}\right] *\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]=\left[\begin{array}{lllllllll}
-6 & -1 & \underbrace{6} 8 & 8 & -5 & -11 & -4 & 0 & 1
\end{array}\right]\right|\left[\begin{array}{llllllll}
2 & 1 & -3 & -2 & 1
\end{array}\right] \circledast\left[\begin{array}{llllll}
3 & 2 & 1 & 0 & 0
\end{array}\right] \right\rvert\,
$$

Example 3

- We know, from Example 2, that
$\left[\begin{array}{lllllll}1 & 2 & 1 & -2 & 3 & 1 & 2\end{array}\right] *\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]=\left[\begin{array}{llllllll}3 & 8 & 8 & -2 & 6 & 7 & 11 & 5\end{array}\right]$ And that
$\left[\begin{array}{lllllll}-2 & 1 & 2 & 1 & -3 & -2 & 1\end{array}\right] *\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]=\left[\begin{array}{llllllll}-6 & -1 & 6 & 8 & -5 & -11 & -4 & 0\end{array}\right]$
- Check that

$$
\begin{aligned}
& \text { [} \left.1 \begin{array}{lllllllllllll}
& 2 & 1 & -2 & 3 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0
\end{array}\right] \text { * }\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right] \\
& =\left[\begin{array}{lllllllllllllll}
3 & 8 & 8 & -2 & 6 & 7 & 11 & 5 & 2 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & -6 & -1 & 6 & 8 & -5 & -11 & -4 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Example 4

- We know that
$\left[\begin{array}{lllllll}1 & 2 & 1 & -2 & 3 & 1 & 2\end{array}\right] *\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]=\left[\begin{array}{lllllllll}3 & 8 & 8 & -2 & 6 & 7 & 11 & 5 & 2\end{array}\right]$ $\left[\begin{array}{lllllll}-2 & 1 & 2 & 1 & -3 & -2 & 1\end{array}\right] *\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]=\left[\begin{array}{llllllll}-6 & -1 & 6 & 8 & -5 & -11 & -4 & 0\end{array}\right]$
- Using Example 3, we have
$\left[\begin{array}{llllllllllllll}1 & 2 & 1 & -2 & 3 & 1 & 2 & -2 & 1 & 2 & 1 & -3 & -2 & 1\end{array}\right]$ * $\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]$
$\left.=\left(\begin{array}{rrrrrrrrrrrrrr}{[} & 1 & 2 & 1 & -2 & 3 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ +[& 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 1 & 2 & 1 & -3 & -2 \\ 1\end{array}\right]\right) *\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]$
$\left.=\begin{array}{rrrrrrrrrrrrrrrrr}{[} & 3 & 8 & 8 & -2 & 6 & 7 & 11 & 5 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Putting results together.

- Suppose $\underline{x}^{(1)}=\left[\begin{array}{lllll}1 & -2 & 3 & 1 & 2\end{array}\right]$ and $\underline{x}^{(2)}=\left[\begin{array}{lllll}2 & 1 & -3 & -2 & 1\end{array}\right]$
- Suppose $\underline{h}=\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]$
- At the receiver, we want to get
- $\left[\begin{array}{lllll}1 & -2 & 3 & 1 & 2\end{array}\right] \star\left[\begin{array}{lllll}3 & 2 & 1 & 0 & 0\end{array}\right]=\left[\begin{array}{lllll}8 & -2 & 6 & 11\end{array}\right]$
- $\left[\begin{array}{lllll}2 & 1 & -3 & -2 & 1\end{array}\right]\left[\begin{array}{lllll}3 & 2 & 1 & 0 & 0\end{array}\right]=\left[\begin{array}{lllll}6 & 8 & -5 & -11 & -4\end{array}\right]$
- We transmit $\left[\begin{array}{llllllllll}1 & 2 \\ \text { Cyclic prefix }\end{array}-2 \begin{array}{llllllll}-2 & 1 & 2 & 1 & -3 & -2 & 1\end{array}\right]$.
- At the receiver, we get

Circular Convolution: Key Properties

- Consider an N-point signal $x[n]$
- Cyclic Prefix (CP) insertion: If $x[n]$ is extended by
copying the last v samples of the symbols at the beginning of the symbol:

$$
\hat{x}[n]= \begin{cases}x[n], & 0 \leq n \leq N-1 \\ x[n+N], & -v \leq n \leq-1\end{cases}
$$

- Key Property 1:

$$
\{h \circledast x\}[n]=\left(h^{*} \widehat{x}\right)[n] \text { for } 0 \leq n \leq N-1
$$

- Key Property 2:

$$
\{h \circledast x\}[n] \xrightarrow{\mathrm{FFT}} H_{k} X_{k}
$$

OFDM with CP for Channel w/ Memory

- We want to send N samples $S_{0}, S_{1}, \ldots, S_{N-1}$ across noisy channel with memory.
- First apply IFFT: $S_{k} \xrightarrow{\text { IFFT }} s[n]$
- Then, add cyclic prefix

$$
\widehat{s}=[s[N-v], \ldots, s[N-1], s[0], \ldots, s[N-1]]
$$

- This is inputted to the channel.
- The output is

$$
y[n]=[p[N-v], \ldots, p[N-1], r[0], \ldots, r[N-1]]
$$

- Remove cyclic prefix to get $r[n]=h[n] \circledast s[n]+w[n]$
- Then apply FFT: $r[n] \xrightarrow{\text { FFT }} R_{k}$
- By circular convolution property of DFT, $R_{k}=H_{k} S_{k}+W_{k}$

OFDM System Design: CP

- A good ratio between the CP interval and symbol duration should be found, so that all multipaths are resolved and not significant amount of energy is lost due to CP .
- As a thumb rule, the CP interval must be two to four times larger than the root mean square (RMS) delay spread.

Summary

- The CP at the beginning of each block has two main functions.
- As guard interval, it prevents contamination of a block by ISI from the previous block.
- It makes the received block appear to be periodic of period N.
- Turn regular convolution into circular convolution
- Point-wise multiplication in the frequency domain

Reference

- A. Bahai, B. R. Saltzberg, and M. Ergen, Multi-Carrier Digital Communications:Theory and Applications of OFDM, 2nd ed., New York: Springer Verlag, 2004.

Ahmad R. S. Bahai I Burton R. Saltzberg I Mustafa Ergen

